If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x-4000=0
a = 1; b = -10; c = -4000;
Δ = b2-4ac
Δ = -102-4·1·(-4000)
Δ = 16100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16100}=\sqrt{100*161}=\sqrt{100}*\sqrt{161}=10\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{161}}{2*1}=\frac{10-10\sqrt{161}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{161}}{2*1}=\frac{10+10\sqrt{161}}{2} $
| 28y+24+-6=-10 | | 3x+1=10-3 | | -2m-8-2=+4 | | 6+2=-2x | | -11a=-5-7+1 | | 8x/4=6 | | 2a=-6+12 | | 34y+24=-10 | | x/12=-5-11 | | 10-8=x/9 | | 12y-6=54+2y | | x=34+1/2 | | 4=55-15+10+5-15+1x+50= | | 10x=25+25 | | 5234523-534-534-523-5-43-5-23-4-2352=4x+2x= | | x+4=40-30/20=x | | 6(5-3y)=4(25+3y) | | 2y-6=-3y+15 | | 6x+6-2x+6=15 | | 50=100-2p | | 10x+4X=60+2X | | (2x+10)*75/10=x(x+10) | | 9h-4+7h=-30 | | 2(3x-5){=25 | | 255.96x^2+68.4x-507.97=0 | | 1.75=(4x^2)/(x^2-2.3x+1.3225) | | (1.15-x)(1.15-x)=0 | | X2-28+3x=180 | | 105+x=124 | | (1-w)(3w-2)=0 | | 1.5*10^8*x^2+x-0.288=0 | | 192=267-u |